Connecting European Neuroscience

Peter Brophy


Programme Committee Member FENS Forum 2018

Curriculum Vitae

EDUCATION:

1970 BSc, Biochemistry, (First class hons), King's College, London University

1974 PhD, Biochemistry, King's College Medical School, London University

CAREER:

1970-1971 Teacher, Biology and Chemistry, Inner London Educational Authority

1974-1976 Post-doctoral Fellow, University of British Columbia, Canada

1976-1977 MS Society Canada Fellow, Utrecht University, The Netherlands

1977-1995 Lecturer, Senior Lecturer and Reader, Biochemistry, Stirling University

1995-2008 Professor of Veterinary Anatomy & Cell Biology, Edinburgh University

1997-2000 Associate Dean for Research, Faculty of Veterinary Medicine, Edinburgh University

1998-2001 Head, Department of Preclinical Veterinary Sciences, Edinburgh University

2002-2008 Director, Centre for Neuroscience Research, Edinburgh University

2008-2014 Director, Centre for Neuroregeneration, Edinburgh University

2009-2014 Chair of Anatomy, The Medical School, Edinburgh University 2014-present Professor of Neuroscience, Edinburgh University. 

Honours and awards

1981-1982 Fulbright-Hays Research Scholar

1982-1983 Max-Planck-Society Fellow

2003 Elected to Fellowship, Academy of Medical Sciences

2007 Elected to Fellowship, Royal Society of Edinburgh

2008 Elected Chair, Gordon Conference on Myelin, Italy

2011 Visiting Distinguished Professor at the École des Neurosciences de Paris. 

General administrative and organisational experience

2006-present Chair, Scientific Advisory Board, INSERM Institute for Molecular and Cellular Neuroscience, Institut du Fer a Moulin, Paris, France

2007-2011 Wellcome Trust Neuroscience Committee 2009 Scientific Committee, Agence Nationale de la Recherché Programme in “Maladies Neurologiques et Maladies Psychiatriques”, France

2009-2011 Neuroscience Programme Committee, Agence Nationale de la Recherché, France

2011-2016 Chair, UK MS Society Grant Review Panel

2012 Scientific Review Committee, European Molecular Biology Laboratory, Monterotondo, Italy 2015 Programme Committee, Euroglia

2016-2017 Local Organising Committee, Euroglia

2016-present Medical Research Panel on Training and Career Development Awards

2017- Neuroscience Programme Committee, Agence Nationale de la Recherché. 

Research interests

Myelination is essential for the normal function of the vertebrate nervous system. We discovered the Periaxin (Prx) gene and its role in forming the Cajal bands (first described by Santiago Ramon y Cajal) in Schwann cells which led to the identification of the cause of a severe demyelinating neuropathy-CMT 4F in humans. This work also permitted the first experimental proof of the proposal by Huxley and Stämpfli (1949) that internodal distance can regulate nerve conduction velocity. A second project has been focused on the assembly of the node of Ranvier in response to myelination. We discovered that the Neurofascin proteins play distinct but essential roles in the clustering of voltage-gated sodium channels at the node of Ranvier. Studies on the role of these proteins during both normal development and during nerve repair exploit live imaging using both conventional and super-resolution microscopy. 

Selected publications

1. Noseda, R., M. Guerrero-Valero, V. Alberizzi, S. C. Previtali, D. L. Sherman, M. Palmisano, R. L. Huganir, K. A. Nave, A. Cuenda, M. L. Feltri, P. J. Brophy, and A. Bolino. (2016) Kif13b Regulates PNS and CNS Myelination through the Dlg1 Scaffold. PLoS Biology 14, e1002440. PMCID: 4829179

2. Desmazieres, A., B. Zonta, A Zhang, L. M. N. Wu, D. L. Sherman, and P. J. Brophy (2014). Differential stability of PNS and CNS nodal complexes when neuronal Neurofascin is lost. J. Neurosci. 34: 5083-5088. PMC3983793

3. Wu, L. M. N., A. Williams, A. Delaney, D. L. Sherman, and P. J. Brophy (2012). Increasing internodal distance in myelinated nerves accelerates nerve conduction to a Flat Maximum. Current Biology 22: 1957-1961. PMC3482659

4. Sherman, D. L., M. Krols, L-M. N. Wu, M. Grove, K-A. Nave, Y-G. Gangloff, and P. J. Brophy (2012). Arrest of myelination and reduced axon growth when Schwann cells lack mTOR. J. Neurosci. 32, 1817-1825 (Cover). PMC4298696

5. Zonta, B., A. Desmazieres, A. Rinaldi, S. Tait, D. L. Sherman, M. F. Nolan, M. F. and P. J. Brophy (2011). A critical Role for Neurofascin in regulating action potential Initiation through maintenance of the Axon Initial Segment. Neuron. 69: 945-956. PMC3057015

6. Zonta, B., S. Tait, S. Melrose, H. Anderson, S. Harroch, J. Higginson, D. L. Sherman, and P. J. Brophy (2008). Glial and neuronal isoforms of Neurofascin have distinct roles in the assembly of nodes of Ranvier in the CNS. J. Cell Biol. 181: 1169-1170. PMC2442198

7. Grove, M., N. H. Komiyama, K. A. Nave, K. A. S. G. Grant, D. L. Sherman, and P. J. Brophy (2007). FAK is required for axonal sorting by Schwann cells. J. Cell Biol. 176: 277-282. PMC2063954

8. Sherman, D. L., S. Tait, S. Melrose, R. Johnson, B. Zonta, F. A. Court, W. B. Macklin, S. Meek, A. J. Smith, D. F. Cottrell, and P. J. Brophy (2005). Organization of axonal domains for saltatory conduction requires the neurofascins. Neuron 48: 737-742 (Cover). PMID: 16337912

9. Court, F. A., D. L. Sherman, T. Pratt, E. M. Garry, R. R. Ribchester, D. F. Cottrell, S. M. Fleetwood-Walker, and P. J. Brophy (2004). Restricted growth of Schwann cells lacking Cajal bands slows conduction in myelinated nerves. Nature 431: 191-195 (Cover). PMID: 15356632

10. Sherman, D. L., C. Fabrizi, C. S. Gillespie and P. J. Brophy (2001). Specific disruption of a Schwann cell dystrophin-related protein complex in a demyelinating neuropathy. Neuron 30: 677-687. PMID: 11430802 (also see commentary: Wrabetz, L. and M. L. Feltri. (2001), Do Schwann cells stop, DR(o) P2, and roll? Neuron 30, 642-644).

Peter Brophy

Professor of Neuroscience and Wellcome Trust Investigator,
Centre for Neuroregeneration
University of Edinburgh
Chancellor's Building
49 Little France Crescent
Edinburgh, EH16 4SB.

loading